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LETTER TO THE EDITOR 

Two-dimensional dodecagonal quasilattices 
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Department of Physics, Tohoku University, Sendai 980, Japan 

Received 5 January 1987 

Abstract. Two-dimensional quasiperiodic lattices with 12-fold rotational symmetry are 
constructed by projecting a four-dimensional hyperhexagonal lattice onto a two- 
dimensional subspace. The projection method in the present case is greatly simplified by 
representing the four-dimensional lattice as a complex two-dimensional lattice. By choosing 
windows with different forms we obtain several quasiperiodic tilings, which have a self- 
similarity. One of the tilings is quite similar to the pattern of the dodecagonal quasicrystal 
of a NiCr alloy. 

Quasicrystals which have long-range quasiperiodic orders with non-crystallographic 
point symmetries are of current interest (see for example Levine and Steinhardt 
1986). The first quasicrystal confirmed by experiment has icosahedral point symmetry 
(Shechtman et a1 1984). Then dodecagonal and decagonal quasicrystals were reported 
(Ishimasa et a1 1985, Bendersky 1985). The latter two are quasiperiodic only along a 
plane but periodic along the normal to the plane. The structure of the decagonal 
quasicrystals is believed to be related to the Penrose tiling, which is a self-similar 
decagonal quasiperiodic tiling of the plane (Penrose 1974, de Bruijn 1981). 

Three methods of constructing dodecagonal quasiperiodic lattices or tilings in two 
dimensions have been proposed to present. The first is by projection of a twelve- 
dimensional hypercubic lattice onto a plane (Gahler and Rhyner 1986). The second 
is based on a generalised grid method (Stampfli 1986); a dodecagonal quasilattice is 
constructed by using two honeycomb grids superposed in such a way that their symmetry 
axes cross by 7r/6 (30"). The third, which is also due to Stampfli (1986), is based on 
the deflation method with respect to a triangular tile and a square one. These three 
dodecagonal quasilattices (or tilings) belong to different local isomorphism ( LI)  classes. 

Recently, by generalising a method of constructing self-similar quasiperiodic pat- 
terns in one dimension we have established a systematic method of constructing 
self-similar quasilattices in two dimensions on the basis of number theory of complex 
quadratic fields. We have applied the method to the case of an algebraic field associated 
with the complex cubic root of 1, i.e. w =exp(2ri /3)  = (-1 +&i)/2, and have suc- 
ceeded in constructing dodecagonal quasilattices and tilings, some of which are different 
from those mentioned above. The original formulation was algebraic but the result 
was found subsequently to be reformulated geometrically. We will present the 
geometrical one. 

The two-dimensional Euclidean plane can be identified with the complex plane; 
mathematically we have an isomorphism R' L- C based on bijection (x, y )  ( E R )  - z = 
x+iy  ( E  C ) .  Then the two-dimensional triangular lattice with unit lattice spacing is 
identified with = { n ,  + n2w 1 n , ,  n, E Z } ,  i.e. the set of all the Eisenstein integers; an 
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Eisenstein integer is a quadratic algebraic integer associated with w (see for example 
Hardy and Wright 1979). Note that 2 forms a ring called an integral domain. 
Note also that 6, the complex conjugate of w, is also an Eisenstein integer because 

Now, let us define a complex two-dimensional lattice by 2' ( = i x i ) =  
{ ( v l ,  v 2 ) (  v l ,  V , E  Z}. Since C2- R4, this complex lattice is essentially a real four- 
dimensional lattice, which is the direct product of two identical triangular lattices. We 
will hereafter refer to this lattice as a hyperhexagonal lattice because it contains 
three-dimensional hexagonal lattices as its hyperlattice planes. 

Before proceeding further, we remark that a multiplication of a complex number 
7 such that I T (  = 1 to complex numbers in C is a one-dimensional unitary transformation 
resulting in a rotation of R2.  

w (=w2)=-1-w.  

Let us take the following unimodular matrix of integral domain 2: 

This matrix represents an area-conserving linear mapping of C2 which leaves 2' (the 
hyperhexagonal lattice) invariant. It is easily checked that M 2  - 2M - W Z  = 0, where 
I is the 2 x 2  unit matrix. Therefore the eigenvalues of M are the solutions of the 
equation A 2  - 21 - w = 0, which is nothing but the secular equation det(11- M) = 0 
(det M = -U). Let us denote the two eigenvalues by r+ and T-   IT+^>  IT-^). Obviously 
T+T- = -a, so that (T+\ \T - )  = 1 and I T + \  > 1 > 17-1. Solving the secular equation, we 
obtain r, = 1 f 5, where L =  exp(.rri/6) = ( ~ ' 3 + i ) / 2  (5'= -6). Note that T+ (or T - )  

represents on the complex plane the longer (or shorter) diagonal of 'unit rhombus' 
whose vertices are at 0, 1, 5 and 1 + 5. The length of the sides of the rhombus is one 
and the two inner angles are .rr/6 (30") and 5 r / 6  (1500). It follows that  IT+^ = 
2cos(.rr/12)=(J3+1)/J2 (21.931 8 5 )  and 1 ~ - ( = ( 7 + / - ' = 2 s i n ( . r r / l 2 ) = ( J 3 - 1 ) / J 2 .  
On the other hand, arg r+ = .rr/12 (15") and arg 7- = -5.rr/12 (-75"). Since  IT+^ appears 
as the ratio of the self-similarity of beautiful dodecagonal quasilattices, as will be 
shown later on, we shall call it the 'platinum ratio' and denote it by T ~ .  

By M, C2 decomposes into two invariant subspaces which are complex one- 
dimensional and real two-dimensional. We denote the subspaces corresponding to 
eigenvalues T+ and T- by C+ ( 2 R2) and C- ( = R 2 ) ,  respectively. The two subspaces 
are orthogonal to each other owing to normality of M, i.e. MMt = M'M. The left 
eigenvectors (row eigenvectors) corresponding to T+ and T -  are given by ( 1 , l )  and 
(1, -L), respectively. They are unitary orthogonal to each other. The projections of 
z = (z, , z 2 ) T ~  C2 onto C+ and C- are given, apart from an unimportant scale factor, 
by z+ = z1 + z25 and z- = z1 - z24' and the linear mapping z + Mz decomposes into two 
mappings z++ r+z+ and z -  + T - Z - .  Thus C+ is subject to a dilatation by T~ and a 
rotation by .rr/12, while C- is subject to a contraction by 7;' and a rotation. 

With the above preparations, we can now write down a quasilattice on C+ as 
D(4, W )  = {v, + v25) ( v, , v2) E i', v, - v 2 5  E 4 + W } ,  where 4 is a complex number 
representing the 'phase vector' and W is a bounded domain (in C+)  representing the 
window (the possibility of constructing a dodecagonal lattice by a projection of a 
four-dimensional lattice was noted by Janssen (1986)). Two quasilattices with the 
same window but with different phase vectors belong to the same LI class. Obviously, 
we obtain D( 4, W )  c D ( 4 ,  W ' )  if W c W'. In the following discussions, we will use 
the conventions aX = { az 1 z E X }  and J? = { P I  z E X } ,  where X is a subset of C and a 
is a complex number. 
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We assume that cW= W and W =  W, so that W has a dodecagonal symmetry 
whose point group is DI2 ,  the dodecagonal dihedral group. Now the 2 x 2 unimodular 
matrix 

is a unitary matrix, so that it represents an orthogonal transformation transforming 
the hyperhexagonal lattice to itself. The order of R is twelve, RI2 = I.  It commutes 
with M and unitary transformation, z + Rz, decomposes into z+ + lz+ and z- + - l z - .  
Using these properties together with the symmetry of W, we can show (see Katz and 
Duneau 1986) that LO(+, W) and D ( 4 ,  W) belong to the same LI class as the one for 
D(4,  W). Accordingly, O(4, W) has a dodecagonal macroscopic symmetry. 

Using several properties of M together with the relationships T-  W = T;' W and 
TI' W = T+ W, we can show also that T + D ( ~ ,  W) = O(T-+,T;' W )  (c O(7-4, W)) and 
T ; ' O ( ~ ,  W )  = D ( T I ' ~ ,  T+ W )  ( 3 D ( T I ' ~ ,  W)), which represent the inflation and the 
deflation rules, respectively (see Katz and Duneau 1986, Gahler 1986). Thus the 
dodecagonal quasilattice constructed in this letter has a self-similarity characterised 
by T+. 

Note that the self-similarity is connected with an improper dilatation because it is 
accompanied by a rotation by arg T+ = v /12  (Stampfli 1986). This is in contrast to 
the self-similarity of the Penrose tiling or of the icosahedral quasilattice (Katz and 
Duneau 1986). Note that a double inflation and a subsequent rotation by - v / 6  give 
rise to a pure dilatation by T ;  = 2+ d 3  ( = 3.732 05) because 7 : J - I  = T;. 

We can assign a bond to each pair of 'algebraic neighbours' (Katz and Duneau 
1986). Then we obtain a tiling of C+. All the bonds have an equal length (actually 
the unit length) because 151 = 1. A bond takes one of twelve orientations 1,& c2, . . . , e " .  
The basic tiles of the tiling are a regular triangle, a square and the unit rhombus, which 
can assume twelve orientations. 

The form of the window is not completely determined by the symmetry argument 
alone. The types of vertices contained in a quasiperiodic tiling and the statistics of 
the vertices are simply determined geometrically from the form of the window (Katz 
and Duneau 1986). We have investigated several windows with different shapes or 
different sizes. We will present three of them separately below. In what follows we 
will denote by A a dodecagonal disc with vertices at 1, 6, e', .  . . , cl' and by H a 
hexagonal disc with vertices at p, p12, p14, .  . . , pl ' ' ,  where p = ~ + / d 3  with IpI = ~ ~ 1 4 3  
( =  1.115) and arg p = ~ 1 1 2 .  

( a )  W, = H U LH. The most beautiful tiling among our results is the case where 
the window is a dodecagonal star given by the union of two hexagons H and LH. The 
resulting tiling is shown in figure 1. A tiling inflated once is also superposed in the 
same figure. The tiling has four types of vertices with coordinations ranging from four 
to seven. This is a new dodecagonal tiling. We should emphasise the similarity of this 
tiling to the schematic pattern drawn from the electron microscope image of the 
dodecagonal quasicrystal of a NiCr alloy (Ishimasa er al 1985). 

( b )  W,, = A. This window is slightly smaller than W,. The tiling shown in figure 
2 does not contain any rhombus but, instead, contains holes of a trigonal hexagon, 
which is equal to the union of two regular triangles, one square and one unit rhombus. 
The tiling has only two types of vertices with four and five coordinations. 

( c )  W,,, = P A .  This window, derived by the projection of a Voronoi polytope of 
the hyperhexagonal lattice onto C- , is equal to the convex closure of W, , In this case 
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Figure 1. The dodecagonal quasiperiodic tiling for the case of a window of a dodecagonal 
star. Bold lines represent the tiling inflated once. 

a bond crosses with another bond because the density of the lattice points is slightly 
larger than in case I. Fortunately, we can derive a dodecagonal tiling with the same 
kinds of tiles as in I if we delete systematically a part of the crossing bonds. The 
resulting tiling can be proved to be identical to the one obtained by Stampfli on the 
basis of the grid method (see figure 1 in Stampfli (1986)), so that we do not present 
the figure. This tiling has ten kinds of vertices including the one with a dodecagonal 
local symmetry. 
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The Fourier transform of a quasilattice constructed by the projection method can 
be calculated easily (Zia and Dallas 1985, Katz and Duneau 1986). The intensity of 
a dodecagonal quasilattice has an exact dodecagonal symmetry. It has also an explicit 
self-similarity characterised by T+ . We present the intensity for case I in figure 3. The 
agreement between the calculated intensity and the diffraction pattern in Ishimasa et 
a1 (1985) is excellent. Several indistinct ‘satellite reflections’ in Ishimasa et a1 (1985) 
can be identified with the ones in figure 3. The details of the dodecagonal tiling will 
be reported elsewhere. 

Figure 3. The intensity of the Fourier transform of the quasilattice in figure 1 .  The diameters 
of the spots are chosen as an increasing function of the intensities. 

If we take a different unimodular matrix, we obtain a different quasilattice whose 
self-similarity is characterised by a root (generally complex) of the corresponding 
secular equation. The point symmetry is, however, hexagonal and therefore crystallo- 
graphic. The present method of constructing a quasilattice can be easily generalised 
to the case of other integral domains of complex quadratic fields. For example, we 
can construct an octagonal self-similar quasilattice if we use a unimodular matrix 
associated with Gaussian integers. We can also construct a four-dimensional self- 
similar quasilattice if we use a quatemian algebraic field. In fact, we have succeeded 
in constructing a quasilattice with the symmetry of a four-dimensional regular polytope 
with 120 vertices by using a unimodular matrix associated with Hurwitz integers 
(Hardy and Wright 1979). This quasilattice contains a three-dimensional icosahedral 
quasilattice as its hyperlattice plane. These will be published elsewhere. 

The work by Stampfli (1986) was pointed out to us by Dr Ishihara of Kyoto University 
after our work was completed. 
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